Quasipositivity as an obstruction to sliceness

Author:

Rudolph Lee

Abstract

For an oriented link L S 3 = D 4 L\,\, \subset \,\,{S^3}\, = \,\,\partial {D^4} , let χ s ( L ) {\chi _s}{\text {(}}L{\text {)}} be the greatest Euler characteristic χ ( F ) \chi (F) of an oriented 2-manifold F (without closed components) smoothly embedded in D 4 {D^4} with boundary L. A knot K is slice if χ s ( K ) = 1 {\chi _s}(K) = 1 . Realize D 4 {D^4} in C 2 {\mathbb {C}^2} as { ( z , w ) : | z | 2 + | w | 2 1 } \{ (z,w):|z{|^2} + |w{|^2} \leq 1\} . It has been conjectured that, if V is a nonsingular complex plane curve transverse to S 3 {S^3} , then χ s ( V S 3 ) = χ ( V D 4 ) {\chi _s}(V \cap {S^3}) = \chi (V \cap {D^4}) . Kronheimer and Mrowka have proved this conjecture in the case that V D 4 V \cap {D^4} is the Milnor fiber of a singularity. I explain how this seemingly special case implies both the general case and the "slice-Bennequin inequality" for braids. As applications, I show that various knots are not slice (e.g., pretzel knots like P ( 3 , 5 , 7 ) \mathcal {P}( - 3,5,7) ; all knots obtained from a positive trefoil O { 2 , 3 } O\{ 2,3\} by iterated untwisted positive doubling). As a sidelight, I give an optimal counterexample to the "topologically locally-flat Thom conjecture".

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fillable contact structures from positive surgery;Transactions of the American Mathematical Society, Series B;2024-08-30

2. Unknotted curves on genus-one Seifert surfaces of Whitehead doubles;Pacific Journal of Mathematics;2024-07-22

3. A characterization of quasipositive two-bridge knots;International Journal of Mathematics;2024-03-02

4. Special Alternating Knots Are Band Prime;International Mathematics Research Notices;2024-02-10

5. Slice knots and knot concordance;Winter Braids Lecture Notes;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3