Abstract
The theory of transport phenomena in metals depends upon the solution of an integral equation for the velocity distribution function f of the conduction electrons. This integral equation is formed by equating the rate of change in f due to external fields and temperature gradients to the rate of change in f due to the mechanism which produces the resistance. If this latter rate of change is denoted by [∂f/∂t]coll it happens with some mechanisms thatwhere f0 is the equilibrium distribution, and ℸ is the time of relaxation which does not depend on the external fields. When equation (1) is true, the problem is comparatively simple, but in general [∂/∂t]coll is an integral operator and it is not possible to define a time of relaxation and a free path. It is known that at high temperatures, such that (Θ/T)2 can be neglected, where Θ is the Debye temperature, a free path exists; but, in general, special methods have to be used to solve the integral equation.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Measurements on thermo-electric forces of some alloys at temperatures from 2.5 TO 17.5 °K
2. Zeit. f. Physik, 59 (1930), 208.
3. Conductibilité. électrique et thermique des métaux (Hermann, 1934), p. 50.
4. Die Quantenstatistik (Springer, 1931), p. 357.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献