On well-quasi-ordering infinite trees

Author:

Nash-Williams C. St. J. A.

Abstract

AbstractLet A be the set of all ascending finite sequences (with at least one term) of positive integers. Let s, tA. Write st if there exist m, n, x1, …, xn such that m < n and x1 < … < xn and s is x1, …, xm and t is x2, x3, …, xn. Call a subset S of A a P-block if, for every infinite ascending sequence x1, x2, … of positive integers, there exists an m such that x1, …, xm belongs to S. A quasi-ordered set Q (i.e. a set on which a reflexive and transitive relation ≤ is defined) is better-quasi-ordered if, for every P-block S and every function f:SQ, there exist s, tS such that st and f(s) ≤ f(t). It is proved that any set of (finite or infinite) trees is better-quasi-ordered if T1T2 means that the tree T1 is homeomorphic to a subtree of the tree T2. This establishes a conjecture of J. B.Kruskal that, if T1, T2, … is an infinite sequence of trees, then there exist i, j such that i < j and TiTj.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference7 articles.

1. On well-quasi-ordering finite trees

2. Well-quasi-ordering, the tree theorem, and Vázsonyi's conjecture;Kruskal;Trans. Amer. Math. Soc.,1960

3. On well-quasi-ordering lower sets of finite trees

4. On the comparability of dendrites;Tarkowski;Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.,1960

5. Ordering by Divisibility in Abstract Algebras

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regular Subgraphs of Linear Hypergraphs;International Mathematics Research Notices;2024-08-02

2. The Number of Topological Types of Trees;Combinatorica;2024-04-04

3. Well-quasi-ordering and Embeddability of Relational Structures;Order;2024-04

4. A proof of the tree alternative conjecture under the topological minor relation;Journal of Combinatorial Theory, Series B;2023-11

5. Hereditary classes of ordered sets of width at most two;European Journal of Combinatorics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3