Regular Subgraphs of Linear Hypergraphs

Author:

Janzer Oliver1,Sudakov Benny2,Tomon István3

Affiliation:

1. Department of Pure Mathematics and Mathematical Statistics, University of Cambridge , Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB , UK

2. Department of Mathematics, ETH, Rämistrasse 101 , Zürich 8092 , Switzerland

3. Department of Mathematics and Mathematical Statistics, Umeå University , Mit-huset Linnaeus väg, Umeå 907 36 , Sweden

Abstract

Abstract We prove that the maximum number of edges in a 3-uniform linear hypergraph on $n$ vertices containing no 2-regular subhypergraph is $n^{1+o(1)}$. This resolves a conjecture of Dellamonica, Haxell, Łuczak, Mubayi, Nagle, Person, Rödl, Schacht, and Verstraëte. We use this result to show that the maximum number of edges in a $3$-uniform hypergraph on $n$ vertices containing no immersion of a closed surface is $n^{2+o(1)}$. Furthermore, we present results on the maximum number of edges in $k$-uniform linear hypergraphs containing no $r$-regular subhypergraph.

Funder

Trinity College

SNSF

Swedish Research Council

Publisher

Oxford University Press (OUP)

Reference24 articles.

1. Improved bounds for the sunflower lemma;Alweiss;Ann. Math.,2021

2. On the existence of triangulated spheres in 3-graphs, and related problems;Brown;Period. Math. Hungar.,1973

3. Concentration inequalities and martingale inequalities: a survey;Chung;Internet Math.,2006

4. On even-degree subgraphs of linear hypergraphs;Dellamonica;Combin. Probab. Comput.,2012

5. A minimum degree condition forcing complete graph immersion;DeVos;Combinatorica,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3