A ‘stick-slip’ problem related to the motion of a free jet at low Reynolds numbers

Author:

Richardson S.

Abstract

A problem in fluid mechanics which has received some attention recently concerns the emergence of an incompressible Newtonian fluid jet from a uniform tube into an inviscid atmosphere. Both the axisymmetric case of a circular tube and the two-dimensional case of flow from between parallel planes are of interest. When the jet falls vertically under gravity, the motion far downstream is dominated by gravity and the expansion procedures of Clarke (3), and Kaye and Vale (10) give details of the flow in this region. When the flow near the exit is at a high Reynolds number, it is reasonable to expect the flow appropriate to that in an infinite tube to prevail right up to the exit (except, perhaps, near the point of discontinuity of the boundary conditions). With this assumption, Duda and Vrentas(5) use a numerical technique to solve for the flow in the axisymmetric jet beyond the exit, both with and without gravity acting in the axial direction. In the absence of gravity, the jet can be expected to attain a constant width some distance downstream, and at high Reynolds numbers the above assumption is sufficient to allow a mass and momentum balance to determine the contraction ratio of the jet as for the axisymmetric case, and for the two-dimensional case (see Harmon (8)). By treating the dynamics of the jet as those of a boundary layer growing on the free surface, Goren and Wronski (6) and Tillett (18) are able to examine the flow in greater detail.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference21 articles.

1. On the laminar flow in a free jet of liquid at high Reynolds numbers

2. (17) Riohardson S. Rheol. Acta (1969), in press.

3. Two-dimensional bubbles in slow viscous flows

4. (15) Richardson S. Slow viscous flows with free surfaces. Ph.D. Dissertation, Cambridge University, 1967.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3