Abstract
A band is a semigroup in which every element is idempotent. In this note we give an explicit description of the Jacobson radical of the semigroup ring of a band over a ring with unity. It is shown, further, that this radical is nil if and only if the Jacobson radical of the coefficient ring is nil. For the particular case of a normal band (see below for the definition) the Jacobson radical of the band ring is nilpotent if and only if the Jacobson radical of the coefficient ring is nilpotent; but this result does not extend to arbitrary bands.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献