Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry

Author:

Margolis Stuart,Saliola Franco,Steinberg Benjamin

Abstract

In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent paper, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band.

The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple modules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of examples is a left regular band structure on the face poset of a CAT(0) cube complex. Also, the recently introduced notion of a COM (complex of oriented matroids or conditional oriented matroid) fits nicely into our setting and includes CAT(0) cube complexes and certain more general CAT(0) zonotopal complexes. A fairly complete picture of the representation theory for CW left regular bands is obtained.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference130 articles.

1. Graduate Texts in Mathematics;Abramenko, Peter,2008

2. Adjoint functors and derived functors with an application to the cohomology of semigroups;Adams, William W.;J. Algebra,1967

3. The virtual Haken conjecture;Agol, Ian;Doc. Math.,2013

4. Fields Institute Monographs;Aguiar, Marcelo,2006

5. CRM Monograph Series;Aguiar, Marcelo,2010

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two vertex geometrically irreducible algebras;Journal of Pure and Applied Algebra;2024-10

2. Labeled sample compression schemes for complexes of oriented matroids;Journal of Computer and System Sciences;2024-09

3. Monoidal categories, representation gap and cryptography;Transactions of the American Mathematical Society, Series B;2024-01-31

4. Quivers of stylic algebras;Algebraic Combinatorics;2024-01-08

5. On left legal semigroups;Acta Mathematica Hungarica;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3