Author:
KOVALEV ALEXEI,LEE NAM-HOON
Abstract
AbstractWe consider the connected-sum method of constructing compact Riemannian 7-manifolds with holonomy G2 developed by the first named author. The method requires pairs of projective complex threefolds endowed with anticanonical K3 divisors and the latter K3 surfaces should satisfy a certain ‘matching condition’ intertwining on their periods and Kähler classes. Suitable examples of threefolds were previously obtained by blowing up curves in Fano threefolds.In this paper, we give a large new class of suitable algebraic threefolds using theory of K3 surfaces with non-symplectic involution due to Nikulin. These threefolds are not obtainable from Fano threefolds as above, and admit matching pairs leading to topologically new examples of compact irreducible G2-manifolds. ‘Geography’ of the values of Betti numbers b2, b3 for the new (and previously known) examples of irreducible G2 manifolds is also discussed.
Publisher
Cambridge University Press (CUP)
Reference21 articles.
1. [4] Corti A. , Haskins M. , Nordström J. and Pacini T. . G 2 manifolds and associative submanifolds via weak Fano 3-folds, in preparation.
2. Classification of Fano 3-folds with B 2 ?2
3. Compact Complex Surfaces
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献