K3 surfaces with two involutions and low Picard number

Author:

Festi Dino,Nijgh Wim,Platt Daniel

Abstract

AbstractLet X be a complex algebraic K3 surface of degree 2d and with Picard number $$\rho $$ ρ . Assume that X admits two commuting involutions: one holomorphic and one anti-holomorphic. In that case, $$\rho \ge 1$$ ρ 1 when $$d=1$$ d = 1 and $$\rho \ge 2$$ ρ 2 when $$d \ge 2$$ d 2 . For $$d=1$$ d = 1 , the first example defined over $${\mathbb {Q}}$$ Q with $$\rho =1$$ ρ = 1 was produced already in 2008 by Elsenhans and Jahnel. A K3 surface provided by Kondō, also defined over $${\mathbb {Q}}$$ Q , can be used to realise the minimum $$\rho =2$$ ρ = 2 for all $$d\ge 2$$ d 2 . In these notes we construct new explicit examples of K3 surfaces over the rational numbers realising the minimum $$\rho =2$$ ρ = 2 for $$d=2,3,4$$ d = 2 , 3 , 4 . We also show that a nodal quartic surface can be used to realise the minimum $$\rho =2$$ ρ = 2 for infinitely many different values of d. Finally, we strengthen a result of Morrison by showing that for any even lattice N of rank $$1\le r \le 10$$ 1 r 10 and signature $$(1,r-1)$$ ( 1 , r - 1 ) there exists a K3 surface Y defined over $${\mathbb {R}}$$ R such that $${{\,\textrm{Pic}\,}}Y_{\mathbb {C}}={{\,\textrm{Pic}\,}}Y \cong N$$ Pic Y C = Pic Y N .

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Artebani, M., Sarti, A., Taki, S.: $$K3$$ surfaces with non-symplectic automorphisms of prime order. Math. Z. 268(1–2), 507–533 (2011), With an appendix by S. Kondō

2. Barth, W., Hulek, K., Peters, C., van de Ven, A.: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics. Springer, Berlin (2015)

3. Bini, G.: On automorphisms of some K3 surfaces with Picard number two. MCFA Ann. 4, 1–3 (2005)

4. Charles, F.: On the Picard number of K3 surfaces over number fields. Algebra Number Theory 8(1), 1–17 (2014)

5. Chen, G., Viaclovsky, J., Zhang, R.: Collapsing Ricci-flat metrics on elliptic K3 surfaces. Comm. Anal. Geom. 28(8), 2019–2133 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3