Turán-type results for intersection graphs of boxes

Author:

Tomon István,Zakharov Dmitriy

Abstract

AbstractIn this short note, we prove the following analog of the Kővári–Sós–Turán theorem for intersection graphs of boxes. If G is the intersection graph of n axis-parallel boxes in $${{\mathbb{R}}^d}$$ such that G contains no copy of Kt,t, then G has at most ctn( log n)2d+3 edges, where c = c(d)>0 only depends on d. Our proof is based on exploring connections between boxicity, separation dimension and poset dimension. Using this approach, we also show that a construction of Basit, Chernikov, Starchenko, Tao and Tran of K2,2-free incidence graphs of points and rectangles in the plane can be used to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew and Rajendraprasad. We show that there exist graphs of separation dimension 4 having superlinear number of edges.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference12 articles.

1. On a problem of K. Zarankiewicz. Colloq.;Kövári;Math.,1954

2. Separation dimension and sparsity

3. [7] Janzer, O. and Pohoata, C. (2020) On the Zarankiewicz problem for graphs with bounded VC-dimension. arXiv preprint, arXiv:2009.00130.

4. [10] Scott, A. and Wood, D. R. (2018) Separation dimension and degree. Math. Proc. Camb. Phil. Soc. 1–10.

5. Separator theorems and Turán-type results for planar intersection graphs

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Number of Incidences When Avoiding an Induced Biclique in Geometric Settings;Discrete & Computational Geometry;2024-05-23

2. Functionality of Box Intersection Graphs;Results in Mathematics;2024-01-06

3. Coloring lines and Delaunay graphs with respect to boxes;Random Structures & Algorithms;2023-10-26

4. Zarankiewicz’s problem for semilinear hypergraphs;Forum of Mathematics, Sigma;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3