Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Chan, T.M., Har-Peled, S.: On the number of incidences when avoiding an induced biclique in geometric settings. In: Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1398–1413 (2023). https://doi.org/10.1137/1.9781611977554.ch50
2. Székely, L.A.: Crossing numbers and hard Erdos problems in discrete geometry. Comb. Probab. Comput. 6(3), 353–358 (1997). https://doi.org/10.1017/S0963548397002976
3. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, pp. 1–56. AMS Press, New York (1999)
4. Chan, T.M., Zheng, D.W.: Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees. In: Proceedings of the 33th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 190–210 (2022). https://doi.org/10.1137/1.9781611977073.10
5. Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: A semi-algebraic version of Zarankiewicz’ problem. J. Eur. Math. Soc. 19(6), 1785–1810 (2017). https://doi.org/10.4171/jems/705