Abstract
AbstractThe classical Andrásfai-Erdős-Sós theorem considers the chromatic number of
$K_{r + 1}$
-free graphs with large minimum degree, and in the case,
$r = 2$
says that any n-vertex triangle-free graph with minimum degree greater than
$2/5 \cdot n$
is bipartite. This began the study of the chromatic profile of triangle-free graphs: for each k, what minimum degree guarantees that a triangle-free graph is k-colourable? The chromatic profile has been extensively studied and was finally determined by Brandt and Thomassé. Triangle-free graphs are exactly those in which each neighbourhood is one-colourable. As a natural variant, Luczak and Thomassé introduced the notion of a locally bipartite graph in which each neighbourhood is 2-colourable. Here we study the chromatic profile of the family of graphs in which every neighbourhood is b-colourable (locally b-partite graphs) as well as the family where the common neighbourhood of every a-clique is b-colourable. Our results include the chromatic thresholds of these families (extending a result of Allen, Böttcher, Griffiths, Kohayakawa and Morris) as well as showing that every n-vertex locally b-partite graph with minimum degree greater than
$(1 - 1/(b + 1/7)) \cdot n$
is
$(b + 1)$
-colourable. Understanding these locally colourable graphs is crucial for extending the Andrásfai-Erdős-Sós theorem to non-complete graphs, which we develop elsewhere.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献