Progress in heavy ion target capsule and hohlraum design

Author:

CALLAHAN DEBRA A.,HERRMANN MARK C.,TABAK MAX

Abstract

Progress in heavy ion target design over the past few years has focused on relaxing the target requirements for the driver and for target fabrication. We have designed a plastic (CH) ablator capsule that is easier to fabricate and fill than the beryllium ablator we previously used. In addition, two-dimensional Rayleigh–Taylor instability calculations indicate that this capsule can tolerate ablator surface finishes up to 10 times rougher than the NIF specification. We have also explored the trade-off between surface roughness and yield as a method for finding the optimum capsule. We have also designed two new hohlraums: a “hybrid” target and a large-angle, distributed radiator target. The hybrid target allows a beam spot radius of almost 5 mm while giving gain of 55 from 6.7 MJ of beam energy in integrated Lasnex calculations. To achieve the required symmetry with the large beam spot, internal shields were used in the target to control the P2 and P4 asymmetry. The large-angle, distributed radiator target is a variation on the distributed radiator target that allows large beam entrance angles (up to 24°). Integrated calculations have produced 340 MJ from 6.2 MJ of beam energy in a design that is not quite optimal, In addition, we have done a simple scaling to understand the peak ion beam power required to compress fuel for fast ignition using a short pulse laser.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3