Bifurcation analysis of steady Rayleigh–Bénard convection in a cubical cavity with conducting sidewalls

Author:

PUIGJANER DOLORS,HERRERO JOAN,SIMÓ CARLES,GIRALT FRANCESC

Abstract

Natural convection in a cubical cavity heated from below with perfectly conducting sidewalls is investigated numerically. A parameter continuation procedure based on a Galerkin spectral method was applied to obtain the bifurcation diagrams for steady flow solutions over the region of Rayleigh numbers Ra ≤ 1.5 × 105 at Prandtl numbers Pr = 0.71 and 130. In both cases, the bifurcation diagrams were more complex than those previously reported for adiabatic sidewalls. Four and nine different convective solutions (without taking into account the solutions obtained by symmetry) that were stable over certain ranges of Ra were respectively identified at Pr = 0.71 and 130. The dependence of the bifurcation diagrams and of the topology of the flow patterns on the Prandtl number were also stronger in the case of conducting sidewalls. Most of the flow patterns investigated evolved to double toroid-like topologies with increasing Rayleigh number. This is especially noticeable at Pr = 130, where all flow patterns adopted double-toroid shapes that were superimposed on the characteristic flow patterns observed at values of Ra slightly above the respective bifurcation points where they originated. At sufficiently high Ra the double-toroid pattern configuration prevailed. This phenomenon, which has not been previously observed in the case of adiabatic lateral walls, is related to the thermal activity of the sidewalls, which locally extract/supply relatively large amounts of heat from/to the fluid. These predictions are consistent with experimental flow transitions and topologies reported in the literature. In addition, a complete bifurcation study in the two-dimensional (Ra, Pr)-plane was carried out for the flow pattern with an initial configuration of four connected half-rolls which was stable at both Pr = 0.71 and 130. Since the surface of Nu over the (Ra, Pr)-plane presented several folds and cusps, different regions were identified as a function of the number of particular realizations of this flow pattern, varying between zero and five. Three different regions of stability were identified for this particular flow pattern in the (Ra, Pr)-plane within the range of parameters investigated, i.e. Ra ≤ 1.5 × 105 and 0.71 ≤ Pr ≤ 130.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3