Rayleigh–Bénard Convection With Multiple Solutions in Trapezoidal Closed Cavities

Author:

Maurya Govind12,Ahmed Nadeem12ORCID,Singh Suneet1,Kumar Lalit12

Affiliation:

1. Department of Energy Science and Engineering, IIT Bombay , Mumbai, Maharashtra 400076, India

2. Indian Institute of Technology Bombay

Abstract

Abstract Rayleigh–Bénard convection (RBC) in symmetric trapezoidal closed cavities with cavity angle ϕ=70°−110°, filled with air, is studied using numerical simulations where inclined side walls are adiabatic. In contrast to rectangular cavities, where no flow exists below a threshold value, there is a weak convection even at a low Rayleigh number (Ra) due to the fact that there is a component of thermal gradient in the horizontal direction in these cavities. Interestingly, these cavities show sudden and significant jumps in the convection, similar to square cavities (Rac = 2585.02 for ϕ=90°), as Ra increases beyond a critical value (Rac). It is noted here that these Rac represent symmetry-breaking pitchfork bifurcations. These bifurcations are seen in both acute (Rac = 8000 for ϕ=70°) and obtuse (Rac = 2300 for ϕ=110°) angle trapezoidal cavities. Moreover, it is observed that multiple steady-state solutions (MSSS) exist as Ra is further increased. A forward and backward continuation approach for numerical simulations is used to track the co-existence of MSSS. These steady-states have co-existing one-roll and two-roll convective patterns beyond another threshold value of Ra. Here, two types of critical Ra have been identified for different cavity angles; one shows the sudden jump in the convection, and the other is the one beyond which MSSS co-exist. Furthermore, a codimension two bifurcation analysis is carried out with Ra and ϕ as two parameters. The bifurcation analysis divides the parameter space into different regions based on the multiplicity of the solutions.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3