Mean-flow scaling of turbulent pipe flow

Author:

ZAGAROLA MARK V.,SMITS ALEXANDER J.

Abstract

Measurements of the mean velocity profile and pressure drop were performed in a fully developed, smooth pipe flow for Reynolds numbers from 31×103 to 35×106. Analysis of the mean velocity profiles indicates two overlap regions: a power law for 60<y+<500 or y+<0.15R+, the outer limit depending on whether the Kármán number R+ is greater or less than 9×103; and a log law for 600<y+<0.07R+. The log law is only evident if the Reynolds number is greater than approximately 400×103 (R+>9×103). Von Kármán's constant was shown to be 0.436 which is consistent with the friction factor data and the mean velocity profiles for 600<y+<0.07R+, and the additive constant was shown to be 6.15 when the log law is expressed in inner scaling variables.A new theory is developed to explain the scaling in both overlap regions. This theory requires a velocity scale for the outer region such that the ratio of the outer velocity scale to the inner velocity scale (the friction velocity) is a function of Reynolds number at low Reynolds numbers, and approaches a constant value at high Reynolds numbers. A reasonable candidate for the outer velocity scale is the velocity deficit in the pipe, UCLŪ, which is a true outer velocity scale, in contrast to the friction velocity which is a velocity scale associated with the near-wall region which is ‘impressed’ on the outer region. The proposed velocity scale was used to normalize the velocity profiles in the outer region and was found to give significantly better agreement between different Reynolds numbers than the friction velocity.The friction factor data at high Reynolds numbers were found to be significantly larger (>5%) than those predicted by Prandtl's relation. A new friction factor relation is proposed which is within ±1.2% of the data for Reynolds numbers between 10×103 and 35×106, and includes a term to account for the near-wall velocity profile.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 576 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3