Equilibrium shapes and stability of captive annular menisci

Author:

Tsamopoulos J. A.,Poslinski A. J.,Ryan M. E.

Abstract

Equilibrium shapes and stability of annular fluid menisci held together by surface tension are analysed by applying asymptotic and computer-aided techniques from bifurcation theory. The shapes and locations of the menisci are governed by the Young–Laplace equation. These shapes are grouped together into families of like symmetry that branch from the basic family of annular shapes at specific values of the aspect ratio, α. Multiple equilibrium shapes exist over certain values of α. The inner, outer or both the inner and outer interfaces may possess either a cylindrical or sinusoidal equilibrium shape. Changes in applied pressure, fluid volume, or gravitational Bond number break families of the same symmetry which now develop limit points. Numerical calculations rely on a finite-element representation of the interfaces and the results compare very well with asymptotic analysis which is valid for small deformations. The results are important for the blow moulding process and are invaluable in understanding its dynamics. These dynamics are expected to be considerably different from the dynamics of a liquid jet first analysed by Rayleigh.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Ungar, L. H. & Brown, R. A. 1982 The dependence of the shape and stability of captive rotating drops on multiple parameters.Phil. Trans. R. Soc. Lond. A306,347–370.

2. Tsamopoulos, J. A. , Akylas, T. R. & Brown, R. A. 1985 Dynamics of charged drop break-up.Proc. R. Soc. Lond. A401,67–88.

3. Young, T. 1805 Essay on the cohesion of fluids.Phil. Trans. R. Soc. Lond. A95,65–87.

4. Laplace, P. S. 1805 Theory of Capillary Attraction . Supplement to the tenth book of Celestial Mechanics (translated and annotated by N. Bowditch, 1839), 1966 reprint by Chelsea. New York.

5. MACSYMA1977 Reference Manual .Laboratory of Computer Science, Massachusetts Institute of Technology.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3