Core–annular flow in a periodically constricted circular tube. Part 1. Steady-state, linear stability and energy analysis

Author:

KOURIS CHARALAMPOS,TSAMOPOULOS JOHN

Abstract

The concentric, two-phase flow of two immiscible fluids in a tube of sinusoidally varying cross-section is studied. This geometry is often used as a model to study the onset of different flow regimes in packed beds. Neglecting gravitational effects, the model equations depend on five dimensionless parameters: the Reynolds and Weber numbers, and the ratios of density, viscosity and volume of the two fluids. Two more dimensionless numbers describe the shape of the solid wall: the constriction ratio and the ratio of its maximum radius to its period. In addition to the effect of the Weber number, which depends on both the fluid and the flow, the effect of the Ohnesorge number J has been examined as it characterizes the fluid alone. The governing equations are approximated using the pseudo-spectral methodology while the Arnoldi algorithm has been implemented for computing the most critical eigenvalues that correspond to axisymmetric disturbances. Stationary solutions are obtained for a wide parameter range, which may exhibit flow recirculation at the expanding portion of the tube. Extensive calculations are made for the dependence of the neutral stability boundaries on the various parameters. In most cases where the steady solution becomes unstable it does so through a Hopf bifurcation. Exceptions to this are cases where the viscosity ratio is O(10−3) and, then, the most unstable eigenvalue remains real. Generally, steady core–annular flow in this geometry is more susceptible to instability than in a straight tube and, in similar ranges of the parameters, it may be generated by different mechanisms. Decreasing the thickness of the annular fluid, inverse Weber number or the Ohnesorge number or the density of the core fluid stabilizes the flow. For stability reasons, the viscosity ratio must remain strictly below unity and it has an optimum value that maximizes the range of allowed Reynolds numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3