Shear-layers in magnetohydrodynamic spherical Couette flow with conducting walls

Author:

SOWARD A. M.,DORMY E.

Abstract

We consider the steady axisymmetric motion of an electrically conducting fluid contained within a spherical shell and permeated by a centred axial dipole magnetic field, which is strong as measured by the Hartmann number M. Slow axisymmetric motion is driven by rotating the inner boundary relative to the stationary outer boundary. For M ≫ 1, viscous effects are only important in Hartmann boundary layers adjacent to the inner and outer boundaries and a free shear-layer on the magnetic field line that is tangent to the outer boundary on the equatorial plane of symmetry. We measure the ability to leak electric current into the solid boundaries by the size of their relative conductance ɛ. Since the Hartmann layers are sustained by the electric current flow along them, the current inflow from the fluid mainstream needed to feed them increases in concert with the relative conductance, because of the increasing fraction ℒ of the current inflow leaked directly into the solids. Therefore the nature of the flow is sensitive to the relative sizes of ɛ−1 and M.The current work extends an earlier study of the case of a conducting inner boundary and an insulating outer boundary with conductance ɛo = 0 (Dormy, Jault & Soward, J. Fluid Mech., vol. 452, 2002, pp. 263–291) to other values of the outer boundary conductance. Firstly, analytic results are presented for the case of perfectly conducting inner and outer boundaries, which predict super-rotation rates Ωmax of order M1/2 in the free shear-layer. Successful comparisons are made with numerical results for both perfectly and finitely conducting boundaries. Secondly, in the case of a finitely conducting outer boundary our analytic results show that Ωmax is O(M1/2) for ɛo−1 ≪ 1 ≪ M3/4, Oo2/3M1/2) for 1 ≪ ɛo−1M3/4 and O(1) for 1 ≪ M3/4 ≪ ɛo−1. On increasing ɛo−1 from zero, substantial electric current leakage into the outer boundary, ℒo ≈ 1, occurs for ɛo−1M3/4 with the shear-layer possessing the character appropriate to a perfectly conducting outer boundary. When ɛo−1 = O(M3/4) the current leakage is blocked near the equator, and the nature of the shear-layer changes. So, when M3/4 ≪ ɛo−1, the shear-layer has the character appropriate to an insulating outer boundary. More precisely, over the range M3/4 ≪ ɛo−1M the blockage spreads outwards, reaching the pole when ɛo−1 = O(M). For M ≪ ɛo−1 current flow into the outer boundary is completely blocked, ℒo ≪ 1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3