A super-rotating shear layer in magnetohydrodynamic spherical Couette flow

Author:

DORMY E.,JAULT D.,SOWARD A. M.

Abstract

We consider axisymmetric magnetohydrodynamic motion in a spherical shell driven by rotating the inner boundary relative to the stationary outer boundary – spherical Couette flow. The inner solid sphere is rigid with the same electrical conductivity as the surrounding fluid; the outer rigid boundary is an insulator. A force-free dipole magnetic field is maintained by a dipole source at the centre. For strong imposed fields (as measured by the Hartmann number M), the numerical simulations of Dormy et al. (1998) showed that a super-rotating shear layer (with angular velocity about 50% above the angular velocity of the inner core) is attached to the magnetic field line [Cscr ] tangent to the outer boundary at the equatorial plane of symmetry. At large M, we obtain analytically the mainstream solution valid outside all boundary layers by application of Hartmann jump conditions across the inner- and outer-sphere boundary layers. We formulate the large-M boundary layer problem for the free shear layer of width M−1/2 containing [Cscr ] and solve it numerically. The super-rotation can be understood in terms of the nature of the meridional electric current flow in the shear layer, which is fed by the outer-sphere Hartmann layer. Importantly, a large fraction of the current entering the shear layer is tightly focused and effectively released from a point source at the equator triggered by the tangency of the [Cscr ]-line. The current injected by the source follows the [Cscr ]-line closely but spreads laterally due to diffusion. In consequence, a strong azimuthal Lorentz force is produced, which takes opposite signs either side of the [Cscr ]-line; order-unity super-rotation results on the equatorial side. In fact, the point source is the small equatorial Hartmann layer of radial width M−2/3 ([Lt ]M−1/2) and latitudinal extent M−1/3. We construct its analytic solution and so determine an inward displacement width O(M−2/3) of the free shear layer. We compare our numerical solution of the free shear layer problem with our numerical solution of the full governing equations for M in excess of 104. We obtain excellent agreement. Some of our more testing comparisons are significantly improved by incorporating the shear layer displacement caused by the equatorial Hartmann layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3