Transport enhancement mechanisms in open cavities

Author:

HORNER MARC,METCALFE GUY,WIGGINS S.,OTTINO J. M.

Abstract

By experiments and supporting computations we investigate two methods of transport enhancement in two-dimensional open cellular flows with inertia. First, we introduce a spatial dependence in the velocity field by periodic modulation of the shape of the wall driving the flow; this perturbs the steady-state streamlines in the direction perpendicular to the main flow. Second, we introduce a time dependence through transient acceleration–deceleration of a flat wall driving the flow; surprisingly, even though the streamline portrait changes very little during the transient, there is still significant transport enhancement. The range of Reynolds and Reynolds–Strouhal numbers studied is 7.7[les ]Re[les ]46.5 and 0.52[les ]ReSr[les ]12.55 in the spatially dependent mode and 12[les ]Re[les ]93 and 0.26[les ]ReSr[les ]5.02 in the time-dependent mode. The transport is described theoretically via lobe dynamics. For both modifications, a curve with one maximum characterizes the various transport enhancement measures when plotted as a function of the forcing frequency. A qualitative analysis suggests that the exchange first increases linearly with the forcing frequency and then decreases as 1/Sr for large frequencies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3