Affiliation:
1. Institute of Fluid Mechanics and Heat Transfer , TU Wien, Getreidemarkt 9, 1060 Wien, Austria
Abstract
The Lagrangian transport in the laminar incompressible flow in a two-dimensional square cavity driven by a harmonic tangential oscillation of the lid is investigated numerically for a wide range of Reynolds and Strouhal numbers. The topology of fluid trajectories is analyzed by stroboscopic projections revealing the co-existence of chaotic trajectories and regular Kolmogorov–Arnold–Moser (KAM) tori. The pathline structure strongly depends on the Reynolds number and the oscillation frequency of the lid. Typically, most pathlines are chaotic when the oscillation frequency is small, with few KAM tori being strongly stretched along instantaneous streamlines of the flow. As the frequency is increased, the fluid motion becomes more regular and the size of the KAM tori grows until, at high frequencies, they resemble streamlines of a mean flow.
Funder
AIC Androsch International Management Consulting GmbH
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献