Turbulent pair dispersion of inertial particles

Author:

BEC J.,BIFERALE L.,LANOTTE A. S.,SCAGLIARINI A.,TOSCHI F.

Abstract

The relative dispersion of pairs of inertial point particles in incompressible, homogeneous and isotropic three-dimensional turbulence is studied by means of direct numerical simulations at two values of the Taylor-scale Reynolds number Reλ ~ 200 and Reλ ~ 400, corresponding to resolutions of 5123 and 20483 grid points, respectively. The evolution of both heavy and light particle pairs is analysed by varying the particle Stokes number and the fluid-to-particle density ratio. For particles much heavier than the fluid, the range of available Stokes numbers is St ∈ [0.1 : 70], while for light particles the Stokes numbers span the range St ∈ [0.1 : 3] and the density ratio is varied up to the limit of vanishing particle density. For heavy particles, it is found that turbulent dispersion is schematically governed by two temporal regimes. The first is dominated by the presence, at large Stokes numbers, of small-scale caustics in the particle velocity statistics, and it lasts until heavy particle velocities have relaxed towards the underlying flow velocities. At such large scales, a second regime starts where heavy particles separate as tracers' particles would do. As a consequence, at increasing inertia, a larger transient stage is observed, and the Richardson diffusion of simple tracers is recovered only at large times and large scales. These features also arise from a statistical closure of the equation of motion for heavy particle separation that is proposed and is supported by the numerical results. In the case of light particles with high density ratio, strong small-scale clustering leads to a considerable fraction of pairs that do not separate at all, although the mean separation increases with time. This effect strongly alters the shape of the probability density function of light particle separations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3