Turbulent dispersion of breath by the wind

Author:

Poydenot Florian1,Abdourahamane Ismael1,Caplain Elsa1,Der Samuel1,Jallon Antoine1,Khoutami Inés1,Loucif Amir1,Marinov Emil1,Andreotti Bruno1

Affiliation:

1. Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France

Abstract

[Media: see text] The pioneering work of Taylor on the turbulent dispersion of aerosols is one century old and provides an interesting way to introduce both diffusive processes and turbulence at an undergraduate level. Low mass particles transported by a turbulent flow exhibit a Brownian-like motion over time scales larger than the velocity correlation time. Aerosols and gases are, therefore, subjected to an effective turbulent diffusion at large length scales. However, the case of a source of pollutant much smaller than the integral scale is not completely understood. Here, we present experimental results obtained by undergraduate students in the context of the COVID-19 pandemic. The dispersion of a fog of oil droplets by a turbulent flow is studied in a wind tunnel designed for pedagogical purposes. It shows a ballistic-like regime at short distance, followed by Taylor's diffusive-like regime, suggesting that scale-free diffusion by the turbulent cascade process is bypassed. Measurements show that the dispersion of CO2 emitted when breathing in a natural, indoor air flow is not isotropic but rather along the flow axis. The transverse spread is ballistic-like, leading to the concentration decaying as the inverse-squared distance to the mouth. The experiment helps students understand the role of fluctuations in diffusive processes and in turbulence. A Langevin equation governing aerosol dispersion based on a single correlation time allows us to model the airborne transmission risk of pathogens, indoors and outdoors. The results obtained in this study have been used to provide public health policy recommendations to prevent transmission in shopping malls.

Funder

Centre National de la Recherche Scientifique

Publisher

American Association of Physics Teachers (AAPT)

Subject

General Physics and Astronomy

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3