Experimental studies of stability and transition in high-speed wakes

Author:

LYSENKO V. I.

Abstract

The investigation undertaken deals with the development of disturbances in a supersonic wake (free viscous layer and regular wake) behind a flat plate both in its linear and nonlinear stages. The influence of a number of factors (Mach and Reynolds numbers, temperature factor, thickness of the plate, length of its stern) on the wake stability and transition was studied. The development of the artificial disturbances in a wake at Mach number M = 2 was investigated also.It was found that compressibility of the flow (increasing Mach number) stabilizes the wake disturbances – their amplification rates decrease, and the transition point moves away from the model plate. Cooling of the model surface at M ≈ 7 has a destabilizing influence on the development of disturbances in the wake. With increase of unit Reynolds number the beginning of transition in the wake moves forward to a rear critical point. It was confirmed that a distinctive maximum in the spectral distribution of fluctuations appears, corresponding to Strouhal number (based on frequency of this maximum) of 0.3. With the growth of the model thickness the disturbance amplification rates in the wake increase, which results in earlier transition of a laminar wake into turbulent one. With the growth of length of the plate stern, the position of the wake transition moves back accordingly, while the wake stability increases a little (though very unsignificantly). In the nonlinear stage of development of disturbances, the occurrence of a triad of waves, satisfying the resonant correlation of frequencies, and the growth of harmonics are observed. A monochromatic packet of waves of Tollmien–Schlichting type, rather narrow (in the transversal coordinate) in the boundary layers on a flat plate with an opposite wedge at the stern, was found to extend in the wake. The wake disturbances have a complex wave structure. At the Mach number of free flow 2.0, the three-dimensional disturbances are the most unstable in the wake.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3