Abstract
The supersonic wake of a circular cylinder in Mach 3 flow was studied through high-speed, focussing schlieren photography. The mean and unsteady behaviour of the separated shear layers, the reattachment process, the recompression wave and the early wake are analysed, and discussed in detail. The fluctuations in the wake are stronger and more coherent than those within the approaching shear layers and the recirculation region. The recompression of the shear layers energises the finer scales in the flow which leads to a departure from a
$-$
1 spectral roll-off observed in the schlieren spectra further upstream. The recompression wave exhibits low-frequency unsteadiness and a ripple-type motion which occurs as it is perturbed by shocklets radiating from the coherent structures in the wake. The wake consists of coherent disturbances with the same characteristic frequency as that for an incompressible flow over a cylinder; however, this instability is suppressed as the wake accelerates, presumably due to increasing compressibility. The primary instability of the wake flow has a characteristic frequency nearly twice that of its incompressible counterpart and it is shown to be driven by the presence of aeroacoustic resonance in the wake. It is also shown that the resonance, which leads to the formation of broadband standing waves in the wake, is the result of an interaction between the wake instabilities and upstream propagating acoustic waves in the wake. The acoustic waves originate upstream of the reattachment region and are believed to be generated by the unsteady separation on the cylinder surface.
Funder
Australian Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Reference48 articles.
1. Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry
2. Waves in screeching jets
3. An experimental investigation of screech noise generation
4. Gowen, F.E. & Perkins, E.W. 1953 Drag of circular cylinders for a wide range of Reynolds numbers and Mach numbers. NACA Tech. Rep. National Advisory Committee for Aeronautics, NACA TN 2960.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献