Symmetry breaking and instability mechanisms in medium depth torsionally driven open cylinder flows

Author:

COGAN STUART J.,RYAN KRIS,SHEARD GREGORY J.

Abstract

A numerical investigation was conducted into the different flow states, and bifurcations leading to changes of state, found in open cylinders of medium to moderate depth driven by a constant rotation of the vessel base. A combination of linear stability analysis, for cylinders of numerous height-to-radius aspect ratios (H/R), and nonlinear stability analysis and three-dimensional simulations for a cylinder of aspect ratio 1.5, has been employed. Attention is focused on the breaking of SO(2) symmetry. A comprehensive map of transition Reynolds numbers as a function of aspect ratio is presented by combining a detailed stability analysis with the limited existing data from the literature. For all aspect ratios considered, the primary instabilities are identified as symmetry-breaking Hopf bifurcations, occurring at Reynolds numbers well below those of the previously reported axisymmetric Hopf transitions. It is revealed that instability modes with azimuthal wavenumbers m = 1, 3 and 4 are the most unstable in the range 1.0 < H/R < 4, and that numerous double Hopf bifurcation points exist. Critical Reynolds numbers generally increase with cylinder aspect ratio, though a decrease in stability occurs between aspect ratios 1.5 and 2.0, where a local minimum in critical Reynolds number occurs. For H/R = 1.5, a detailed characterisation of instability modes is given. It is hypothesized that the primary instability leading to transition from steady axisymmetric flow to unsteady three-dimensional flow is related to deformation of shear layers that are present in the flow, in particular at the interfacial region between the vortex breakdown bubble and the primary recirculation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3