Axisymmetric rotating flow with free surface in a cylindrical tank

Author:

Yang WenORCID,Delbende IvanORCID,Fraigneau YannORCID,Martin Witkowski LaurentORCID

Abstract

The flow induced by a disk rotating at the bottom of a cylindrical tank is characterised using numerical techniques – computation of steady solutions or time-averaged two-dimensional and three-dimensional direct simulations – as well as laser-Doppler velocimetry measurements. Axisymmetric steady solutions reveal the structure of the toroidal flow located at the periphery of the central solid body rotation region. When viewed in a meridional plane, this flow cell is found to be bordered by four layers, two at the solid boundaries, one at the free surface and one located at the edge of the central region, which possesses a sinuous shape. The cell intensity and geometry are determined for several fluid-layer aspect ratios; the flow is shown to depend very weakly on Froude number (associated with surface deformation) or on Reynolds number if sufficiently large. The paper then focuses on the high Reynolds number regime for which the flow has become unsteady and three-dimensional while the surface is still almost flat. Direct numerical simulations show that the averaged flow shares many similarities with the above steady axisymmetric solutions. Experimental measurements corroborate most of the numerical results and also allow for the spatio-temporal characterisation of the fluctuations, in particular the azimuthal structure and frequency spectrum. Mean azimuthal velocity profiles obtained in this transitional regime are eventually compared to existing theoretical models.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3