Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer

Author:

NISHIMURA K.,HUNT J. C. R.

Abstract

Experiments were conducted in a wind tunnel in which a turbulent boundary layer was naturally grown over flat beds of three types of nearly mono-disperse spherical particles with different diameters, densities and coefficient of restitution (r) (snow, 0.48 mm, 910 kg m−3; mustard seeds, 1.82 mm, 1670 kg m−3, r = 0.7; ice particles, 2.80 mm, 910 kg m−3, r = 0.8–0.9). The surface wind speeds (defined by the friction velocity u∗) were varied between 1.0 and 1.9 times the threshold surface wind speed (defined by ut). The trajectories, and ejection and impact velocities of the particles were recorded and analysed, even those that were raised only about one diameter into the flow.Measurements of the average horizontal flux of saltating particles per unit area, f(z), at each level z above the surface showed that, for u∗/ut [les ] 1.5, f(z) is approximately independent of the particle density and decreases exponentially over a vertical scale length lf, that is about 3 to 4 times the estimated mean height of the particle trajectories 〈h〉. Numerical simulations of saltating grains were computed using the measured probabilities of ejection velocities and the mean velocity profile of the air flow, but neglecting the direct effect of the turbulence. The calculated mean values of the impact velocities and the trajectory dimensions were found to agree with the measurements in the saltation range, where u∗/ut < 1.5. Similarly, in this range the simulations of the horizontal flux profile and integral are also consistent with the measurements and with Bagnold's u3 formula, respectively.When u∗/ut [ges ] 1.5, and u∗/VT [ges ] 1/10, where VT is the settling velocity, a transition from saltation to suspension occurs. This is indicated by the change in the mean mass flux profile which effectively becomes uniform with height (z) up to the top of the boundary layer. An explanation is provided for this low value of turbulence at transition relative to the settling velocity in terms of the random motion of the particles under the action of the turbulence when they reach the tops of their parabolic trajectories. The experiments show that, as u∗/ut increases from 1.0 to 1.9 the normalized mean vertical impact velocity 〈V3I〉/u∗ decreases by nearly 60% to about 0.6, which is less than 50% of the value for fluid particles. There is also a decrease in the vertical and horizontal component of the ejection velocity to values of 0.8 and 2.3, which are much less than their values in the saltation regime. We hypothesize that at the transition from saltation to suspension the ejection process changes quite sharply from being determined by impact collisions to being the result of aerodynamic lift forces and upward eddy motions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3