Study of turbulence intermittency in unstable atmospheric surface layer and its effect on saltation sand motion based on wavelet transform

Author:

Mei AoORCID,Liao YonganORCID,Zhou ShanlinORCID,Leng TingtingORCID,Li MingyangORCID,Ma YinhuaORCID,Zhou Lei,Xiu ChenxiORCID

Abstract

Turbulence in the atmospheric surface layer, especially in deserts and semi-arid regions, significantly affects sand movement. In unstable stratification, turbulence exhibits complex intermittency, complicating its impact on saltation. This study uses wavelet transform analysis to examine the effects of turbulence intermittency in unstable stratification on saltation. Our analysis reveals that in unstable stratification, the energy distribution of turbulence is more dispersed, the intermittent characteristics are more significant, and the intermittent burst duration of streamwise turbulence is longer, while the vertical intermittent burst duration is shorter. The fitting formulas of the energy ratio and stratification stability of the streamwise wind speed, vertical wind speed, and temperature at different frequencies are given. In addition, there is a complex nonlinear relationship between stratification stability and friction velocity on saltation. In unstable stratification, the critical wind speed required for saltation is higher than that of near-neutral, and the jumping speed and horizontal transport are weakened. Moreover, the coherence between wind speed and saltation flux increases significantly at low frequency with the increase in instability, indicating that large-scale motion plays a key role in saltation under these conditions. The more unstable the stratification is, the more obvious the phase difference fluctuation of the low frequency part is, and the more unfavorable the formation of stable saltation sand conditions. This study reveals the turbulence intermittently and its complex effects on sand particle movement in unstable stratification, which is of great significance for predicting and controlling dust storms, land desertification, and soil erosion.

Funder

Natural Science Foundation of Chongqing Municipality

Chongqing Municipal Education Commission

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3