Viscous flow in a channel with periodic cross-bridging fibres: exact solutions and Brinkman approximation

Author:

Tsay Ruey-Yug,Weinbaum Sheldon

Abstract

A general solution of the three-dimensional Stokes equations is developed for the viscous flow past a square array of circular cylindrical fibres confined between two parallel walls. This doubly periodic solution, which is an extension of the theory developed by Lee & Fung (1969) for flow around a single fibre, successfully describes the transition in behaviour from the Hele-Shaw potential flow limit (aspect ratio B [Lt ] 1) to the viscous two-dimensional limiting case (B [Gt ] 1, Sangani & Acrivos 1982) for the hydrodynamic interaction between the fibres. These results are also compared with the solution of the Brinkman equation for the flow through a porous medium in a channel. This comparison shows that the Brinkman approximation is very good when B > 5, but breaks down when B [les ] O(1). A new interpolation formula is proposed for this last regime. Numerical results for the detailed velocity profiles, the drag coefficient f, and the Darcy permeability Kp are presented. It is shown that the velocity component perpendicular to the parallel walls is only significant within the viscous layers surrounding the fibres, whose thickness is of the order of half the channel height B′. One finds that when the aspect ratio B > 5, the neglect of the vertical velocity component vz can lead to large errors in the satisfaction of the no-slip boundary conditions on the surfaces of the fibres and large deviations from the approximate solution in Lee (1969), in which vz and the normal pressure field are neglected. The numerical results show that the drag coefficient of the fibrous bed increases dramatically when the open gap between adjacent fibres Δ′ becomes smaller than B′. The predictions of the new theory are used to examine the possibility that a cross-bridging slender fibre matrix can exist in the intercellular cleft of capillary endothelium as proposed by Curry & Michel (1980).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference34 articles.

1. Sangani, A. S. & Acrivos, A. ,1982 Intl J. Multiphase Flow 8,193.

2. Curry, F. E. :1984 Transcapillary exchange. In Handbook of Physiology (ed. E. M. Renkin & C. C. Michel ), sect, 2, The Cardiovascular System, Vol. 4, The Microcirculation,Bethesda, Md,American Physiological Society,309.

3. Thompson, B. W. :1953 J. Fluid Mech. 31,397.

4. Bundgaard, M. :1984 J. Ultrastruct. Res. 88,1.

5. Larson, R. E. & Higdon, J. J. L. 1986 J. Fluid Much. 166,449.

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3