Patterning of membrane adhesion under hydraulic stress

Author:

Dinet CélineORCID,Torres-Sánchez AlejandroORCID,Arroyo MarinoORCID,Staykova MargaritaORCID

Abstract

AbstractHydraulic fracturing plays a major role in the formation of biological lumens during embryonic development, when the accumulation of pressurized fluid leads to the formation of microlumens that fracture cell-cell contacts and later evolve to form a single large lumen. However, the physical principles underpinning the formation of a pattern of microlumens from a pristine adhesion and their subsequent coarsening are poorly understood. Here, we use giant unilamellar vesicles adhered to a supported lipid bilayer and subjected to osmotic stress to generate and follow the dynamics of hydraulic fracturing akin to those in cells. Using this simplified system together with theoretical modelling and numerical simulations, we provide a mechanistic understanding of the nucleation of hydraulic cracks, their spatial patterns and their coarsening dynamics. Besides coarsening, we show that microlumens can irreversibly bud out of the membrane, reminiscent of endocytic vesicles in cell-cell adhesion. By establishing the physics of patterning and dynamics of hydraulic cracks, our work unveils the mechanical constraints for the biological regulation of hydraulically-driven adhesion remodeling.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3