Shear-flow instability due to a wall and a viscosity discontinuity at the interface

Author:

Hooper A. P.,Boyd W. G. C.

Abstract

Consider the Couette flow of two superposed fluids of different viscosity with the depth of the lower fluid bounded by a wall and the interface while the depth of the upper fluid is unbounded. The linear instability of this flow configuration is studied at all values of flow Reynolds number and disturbance wavelength using both asymptotic and numerical methods. Three distinct forms of instability are found which are dependent on the magnitude of two dimensionless parameters β and (α R)1/3, where β is a dimensionless wavenumber measured on a viscous lengthscale, α is a dimensionless wavenumber measured on the scale of the depth of the lower fluid and R is the Reynolds number of the lower fluid. At large β there is the short-wave instability found previously by Hooper & Boyd (1983). At small β and small (αR)1/3 there is the long-wave instability first discovered by Yih. At small β and large (αR)1/3 there is a new type of instability which arises only if the kinematic viscosity of the lower bounded fluid is less than the kinematic viscosity of the upper fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. Hooper, A. P. & Boyd, W. G. C. 1983 Shear-flow instability at the interface between two viscous fluids.J. Fluid Mech. 128,507.

2. Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability .Cambridge University Press.

3. Yih, C.-S. 1967 Instability due to viscous stratification.J. Fluid Mech. 27,337.

4. Rosenhead, L. (ed)1963 Laminar Boundary Layers .Oxford University Press.

5. Charles, M. E. & Lilleleht, L. U. 1965 An experimental investigation of stability and interfacial waves in co-current flow of two liquids.J. Fluid Mech. 22,217.

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3