Stability analysis of viscous multi-layer shear flows with interfacial slip

Author:

Katsiavria Anna1,Papageorgiou Demetrios T1

Affiliation:

1. Department of Mathematics, Imperial College London , South Kensington Campus London SW7 2AZ , UK

Abstract

Abstract One of the most fundamental interfacial instabilities in ideal, immiscible, incompressible multifluid flows is the celebrated Kelvin–Helmholtz (KH) instability. It predicts short-wave instabilities that, in the absence of other mollifying physical mechanisms (e.g. surface tension, viscosity), render the nonlinear problem ill-posed and lead to finite-time singularities. The crucial driving mechanism is the jump in tangential velocity across the liquid–liquid interface, i.e. interfacial slip, that can occur since viscosity is absent. The purpose of the present work is to analyse analogous instabilities for viscous flows at small or moderate Reynolds numbers as opposed to the infinite Reynolds numbers that underpin KH instabilities. The problem is physically motivated by both experiments and simulations. The fundamental model considered consists of two superposed viscous, incompressible, immiscible fluid layers sheared in a plane Couette flow configuration, with slip present at the deforming liquid–liquid interface. The origin of slip in viscous flows has been observed in experiments and molecular dynamics simulations, and can be modelled by employing a Navier-slip boundary condition at the liquid–liquid interface. The emerging novel instabilities are studied in detail here. The linear stability of the system is addressed asymptotically for long- and short-waves, and for arbitrary wavenumbers using a combination of analytical and numerical calculations. Slip is found to be capable of destabilising perturbations of all wavelengths. In regimes where the flow is stable to perturbations of all wavelengths in the absence of slip, its presence can induce a Turing-type instability by destabilization of a small band of finite wavenumber perturbations. In the case where the underlying layer is asymptotically thin, the results are found to agree with the linear properties of a weakly non-linear asymptotic model that is also derived here. The weakly nonlinear model extends previous work by the authors that had a thin overlying layer that produces a different evolution equation.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3