Convection in a saturated porous medium at large Rayleigh number or Peclet number

Author:

Wooding R. A.

Abstract

When the dimensions of a convective system in a saturated porous medium are sufficiently great, diffusion effects can be neglected except in regions where the gradients of fluid properties are very large. A boundary-layer theory is developed for vertical plane flows in such regions. In special cases, the theory is equivalent to that for laminar incompressible flow in a two-dimensional half-jet, or in a plane jet or round jet, for which similarity solutions are well known.A number of experiments have been performed using a Hele-Shaw cell immersed in water, with a source of potassium permanganate solution located between the plates. At very small values of the source strength, a flow analogous to that of a plane jet from a slit is obtained. The distance advanced by the jet front, or cap, is measured as a function of time, and the velocity is found to be nearly proportional to the velocity of the fluid on the axis of the steady jet behind the cap, as given by the similarity law of Schlichting and Bickley. At large values of the source strength, a two-dimensional ‘broad jet’ of homogeneous solution descending under gravity is produced; the shape of the flow region can be calculated with little error from potential theory, neglecting the effect of the mixing layers.A possible example of a mixing layer observed in a geothermal region is examined. The theoretical form of the temperature distribution is calculated numerically, taking into account the large viscosity variation with temperature and also the possibility of a large permeability variation. These effects are found to have less influence upon the solution than might have been expected. Quantitative values obtained for the physical parameters are consistent with other geophysical observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Segedin, C. M. & Miller, J. B. 1962 N. Z. J. Sci. 5,43.

2. Studt, F. E. & Modriniak, N. 1959 N. Z. J. Geol. Geophys. 2,654.

3. Görtler, H. 1942 Z. angew. Math. Mech. 22,244.

4. Pai, S. I. 1954 Fluid Dynamics of Jets .New York:Van Nostrand.

5. Turner, J. S. 1962 J. Fluid Mech. 13,356.

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3