Non-similarity solutions to the corner boundary-layer equations (and the effects of wall transpiration)

Author:

DUCK PETER W.,STOW SIMON R.,DHANAK MANHAR R.

Abstract

The incompressible boundary layer in the corner formed by two intersecting, semi-infinite planes is investigated, when the free-stream flow, aligned with the corner, is taken to be of the form UF(x), x representing the non-dimensional streamwise distance from the leading edge. In Dhanak & Duck (1997) similarity solutions for F(x) = xn were considered, and it was found that solutions exist for only a range of values of n, whilst for ∞ > n > −0.018, approximately, two solutions exist. In this paper, we extend the work of Dhanak & Duck to the case of non-90° corner angles and allow for streamwise development of solutions. In addition, the effect of transpiration at the walls of the corner is investigated. The governing equations are of boundary-layer type and as such are parabolic in nature. Crucially, although the leading-order pressure term is known a priori, the third-order pressure term is not, but this is nonetheless present in the leading-order governing equations, together with the transverse and crossflow viscous terms.Particular attention is paid to flows which develop spatially from similarity solutions. It turns out that two scenarios are possible. In some cases the problem may be treated in the usual parabolic sense, with standard numerical marching procedures being entirely appropriate. In other cases standard marching procedures lead to numerically inconsistent solutions. The source of this difficulty is linked to the existence of eigensolutions emanating from the leading edge (which are not present in flows appropriate to the first scenario), analogous to those found in the computation of some two-dimensional hypersonic boundary layers (Neiland 1970; Mikhailov et al. 1971; Brown & Stewartson 1975). In order to circumvent this difficulty, a different numerical solution strategy is adopted, based on a global Newton iteration procedure.A number of numerical solutions for the entire corner flow region are presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3