Impact of Non-Similar Modeling for Thermal Transport Analysis of Mixed Convective Flows of Nanofluids Over Vertically Permeable Surface

Author:

Hussain Muzamil1,Khan Wafa1,Farooq Umer1,Razzaq Raheela1

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Park Road Chak Shahzad Islamabad, 44000, Pakistan

Abstract

In the current article, non-similar model is developed for mixed convective boundary layer flow over a permeable vertical surface immersed in nanofluid. The flow is initiated due to the plate stretching in vertical direction and by natural means such as buoyancy. The governing dimensional equations are converted to non-dimensional equations through characteristic dimensions. Furthermore the non-similar modeling is done by choosing ξ (X) as non-similarity variable and η(X, Y) as pseudo-similarity variable. The non-similar partial differential system (PDS) is then solved by using local non-similarity method via bvp4c. The heat and mass transfer analysis are carried out by studying local Nusselt and Sherwood numbers in tabular form for some important parameters involved in the non-similar flow. The concentration, velocity and temperature profiles are graphically represented for various dimensionless number such as Prandtl number (Pr), Brownian motion (Nb), Lewis number Le and thermophoresis (Nt). Reversed flow is observed for the velocity profile as non-similar variable is varied. Enhancement in thermal profile is witnessed for Nb, Nt and reduction in temperature is observed for Pr. Concentration is reduced for different values of Pr, Le, Nb. Finally this article intends to develop an intuitive understanding of non-similar models by emphasizing the physical arguments. The authors developed the nonsimilar transformations and tackled the dimensionless non-similar structure by employing the local non-similarity technique. To the best of authors’ observations, no such study is yet published in literature. This study may be valuable for the researchers investigating towards industrial nanofluid applications, notably in geophysical and geothermal systems, heat exchangers, solar water heaters, biomedicine, and many other fields.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3