Author:
Loewen M. R.,Melville W. K.
Abstract
An experimental study of the microwave backscatter and acoustic radiation from breaking waves is reported. It is found that the averaged microwave and acoustic measurements correlate with the dynamics of wave breaking. Both the mean-square acoustic pressure and the backscattered microwave power correlate with the wave slope and dissipation, for waves of moderate slope (S < 0.28). The backscattered power and the mean-square pressure are also found to correlate strongly with each other. As the slope and wavelength of the breaking wave packet is increased, both the backscattered power and the mean-square pressure increase. It is found that a large portion of the backscattered microwave power precedes the onset of sound production and visible breaking. This indicates that the unsteadiness of the breaking process is important and that the geometry of the wave prior to breaking may dominate the backscattering. It is observed that the amount of acoustic energy radiated by an individual breaking wave scaled with the amount of mechanical energy dissipated during breaking. These laboratory results are compared to the field experiments of Farmer & Vagle (1988), Crowther (1989) and Jessup et al. (1990).
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献