On the mechanism of air entrainment by liquid jets at a free surface

Author:

ZHU YONGGANG,OĞUZ HASAN N.,PROSPERETTI ANDREA

Abstract

The process by which a liquid jet falling into a liquid pool entrains air is studied experimentally and theoretically. It is shown that, provided the nozzle from which the jet issues is properly contoured, an undisturbed jet does not entrap air even at relatively high Reynolds numbers. When surface disturbances are generated on the jet by a rapid increase of the liquid flow rate, on the other hand, large air cavities are formed. Their collapse under the action of gravity causes the entrapment of bubbles in the liquid. This sequence of events is recorded with a CCD and a high-speed camera. A boundary-integral method is used to simulate the process numerically with results in good agreement with the observations. An unexpected finding is that the role of the jet is not simply that of conveying the disturbance to the pool surface. Rather, both the observed energy budget and the simulations imply the presence of a mechanism by which part of the jet energy is used in creating the cavity. A hypothesis on the nature of this mechanism is presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3