Sound amplitude of discrete bubbles entrained by an impacting water stream

Author:

Nelli Filippo1ORCID,Zhu Shuang1,Ooi Andrew2ORCID,Manasseh Richard1ORCID

Affiliation:

1. Department of Mechanical and Product Design Engineering, School of Engineering, Swinburne University of Technology 1 , Hawthorn, Victoria 3122, Australia

2. Department of Mechanical Engineering, The University of Melbourne 2 , Parkville, Victoria 3010, Australia

Abstract

Experiments were undertaken to develop a relationship between bubble size and acoustic-emission amplitude for a vertical stream of water impacting a water pool. A particular focus is the formation of the discrete bubbles. Although the relationship between bubble diameter and the natural frequency of sound emissions has been established through Minnaert's work, a comprehensive investigation into the amplitude of sound emissions is missing. Air bubbles were generated from the impact of falling-water streams of varying diameters on an underlying water pool and their acoustic emissions were recorded using a nearby hydrophone. Sound amplitude was found to increase monotonically with bubble size. A second-order polynomial relationship between logarithmic acoustic sound pressure level (L) and bubble diameter (Db) was found, L=−0.0401Db2+1.5781Db+110.7225 within the ±3 dB margin of error. The relationship between linear sound pressure level (P) and bubble diameter (Db) is expressed by the equation P=0.0059Db2+0.0505Db+0.3591, within the ±3 dB margin of error. Results demonstrate that larger bubbles (D > 4 mm) exhibit noise emissions similar to bubbles produced by other mechanisms, such as the underwater nozzle, while smaller diameters tend to produce higher noise levels compared to the same mechanism.

Funder

ARC

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3