Investigation of turbulent convection under a rotational constraint

Author:

Chan Shu-Kwan

Abstract

Turbulent convection for a rotating layer of fluid heated from below is studied in this paper. The boundaries of the fluid layer are taken to be free. The underlying principle, used is the Malkus hypothesis that the flow tends to transport the maximum amount of heat possible, subject to certain constraints. By taking the Prandtl number to be infinite, a linear differential constraint and an integral constraint are used. The variational problem that follows then depends on two dimensionless parameters, the Taylor number T and the Rayleigh number R.Asymptotic analysis for the turbulent regime shows that the flow arranges itself so as to tend to offset the stabilizing effect of the rotational constraint, at least in so far as the heat flux is concerned. The dimensionless heat flux, or the Nusselt number, has in general different dependence on T and R, depending on the particular region in the parameter space. For T [les ] O(R), the flow is essentially non-rotating. For O(R) [les ]T [les ] O(R4/3), the flow will always have finitely many horizontal wavenumbers, though the total number of modes increases as T increases in this region. For O(R4/3) [les ] T [les ] O (R3/2), the Nusselt number has a functional dependence proportional to R3/T2, having essentially infinitely many horizontal modes as both R and T increase indefinitely in this region. The last expression is particularly interesting, as it agrees qualitatively with results in finite-amplitude laminar convection. It is also linearly dependent on the layer thickness, as one might expect from dimensional argument. It is suggested that, in the context of the maximum principle, the result in this region of the parameter space may be applicable as well to the same fluid layer with rigid boundaries through the existence of an Ekman layer that is thinner than the thermal layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. Howard, L. N. 1963 J. Fluid Mech. 17,405.

2. Chan, S. K. 1972 Proc. 6th Southeastern Conf. on Theor. & Appl. Mech.

3. Nihoul, J. J. 1966 J. Fluid Mech. 25,1.

4. Malkus, W. V. R. 1956 J. Fluid Mech. 1,521.

5. Townsend, A. A. 1961 The mechanics of turbulence.Int. Symp. of the Nat. Sci. Res. Ctr. Gordon & Breach.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3