Velocity and acceleration statistics in rapidly rotating Rayleigh–Bénard convection

Author:

Rajaei HadiORCID,Alards Kim M. J.,Kunnen Rudie P. J.ORCID,Clercx Herman J. H.

Abstract

Background rotation causes different flow structures and heat transfer efficiencies in Rayleigh–Bénard convection. Three main regimes are known: rotation unaffected, rotation affected and rotation dominated. It has been shown that the transition between rotation-unaffected and rotation-affected regimes is driven by the boundary layers. However, the physics behind the transition between rotation-affected and rotation-dominated regimes are still unresolved. In this study, we employ the experimentally obtained Lagrangian velocity and acceleration statistics of neutrally buoyant immersed particles to study the rotation-affected and rotation-dominated regimes and the transition between them. We have found that the transition to the rotation-dominated regime coincides with three phenomena; suppressed vertical motions, strong penetration of vortical plumes deep into the bulk and reduced interaction of vortical plumes with their surroundings. The first two phenomena are used as confirmations for the available hypotheses on the transition to the rotation-dominated regime while the last phenomenon is a new argument to describe the regime transition. These findings allow us to better understand the rotation-dominated regime and the transition to this regime.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3