Author:
Suslov Sergey A.,Paolucci Samuel
Abstract
We have examined the linear stability of the fully developed mixed-convection flow in a differentially heated tall vertical channel under non-Boussinesq conditions. The Three-dimensional analysis of the stability problem was reduced to an equivalent two-dimensional one by the use of Squire's transformation. The resulting eigenvalue problem was solved using an integral Chebyshev pseudo-spectral method. Although Squire's theorem cannot be proved analytically, two-dimensional disturbances are found to be the most unstable in all cases. The influence of the non-Boussinesq effects on the stability was studied. We have investigated the dependence of the critical Grashof and Reynolds numbers on the temperature difference. The results show that four different modes of instability are possible, two of which are new and due entirely to non-Boussinesq effects.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献