Non-Oberbeck–Boussinesq effects on the linear stability of a vertical natural convection boundary layer

Author:

Ke JunhaoORCID,Armfield S.W.ORCID,Williamson N.ORCID

Abstract

The non-Oberbeck–Boussinesq effects on the stability of a vertical natural convection boundary layer are investigated using the linearised disturbance equations for air flows up to a temperature difference of $\Delta T=100\,{\rm K}$ . Based on the linear stability results, the neutral curve is shown to be sensitive to the choice of reference temperature. When evaluated using the film temperature $T_f$ , a lower film Grashof number is required to trigger the linear instability for larger $\Delta T$ . The relative contributions of shear and buoyant production to the perturbation kinetic energy budget reveals that the marginally unstable modes are amplified based on different mechanisms: for lower wavenumbers at relatively small Grashof number, the instability is driven by buoyancy; whereas for higher wavenumbers and larger Grashof number, the flow becomes unstable due to a shear instability. The use of reference temperature is found to scale the shear- and buoyant-driven instabilities differently so that no single reference temperature definition would collapse the neutral curves. The linear stability result further demonstrates that at a given Grashof number a higher temperature difference would give a larger amplification rate of the perturbation, which then leads to an earlier onset of the nonlinearities when evaluated at $T_f$ . Finally, by comparing the amplification rates obtained from direct numerical simulation and the linear stability results, the extent of the linear regime is determined for $\Delta T = 100\,{\rm K}$ .

Funder

Australian Research Council

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3