Direct numerical simulations of riblets to constrain the growth of turbulent spots

Author:

STRAND JAMES S.,GOLDSTEIN DAVID B.

Abstract

A spectral direct numerical simulation (DNS) code was used to study the growth and spreading of turbulent spots in a nominally laminar, zero-pressure-gradient boundary layer. In addition to the flat-plate case, the interaction of these spots with riblets was investigated. The flat plate, riblets and initial spot perturbation were simulated via an immersed boundary method, and a ‘suction wall’ allowed the available channel code to model a boundary layer. In both flat-wall and riblet cases, self-similar arrowhead-shaped spots formed. The λ2 variable of Jeong & Hussain (1995) was used to visualize the vortical structures within a spot, and a spot was seen to consist primarily of a multitude of entwined hairpin vortices. The range of scales of the hairpin vortices was found to increase as the spot matures. Ensemble averaging was used to obtain more accurate results for the spot spreading angle, both for the flat-wall case and the riblet case. The spreading angle for the flat-wall spot was 6.3°, in reasonably good agreement with prior DNS work. The spreading angle for the spot over riblets was 5.4°, a decrease of 14% compared with the flat-wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference34 articles.

1. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer

2. Strand J. & Goldstein D. 2010 DNS of surface textures to control the growth of turbulent spots. In 48th AIAA Aerospace Sciences Meeting, Orlando, FL. AIAA Paper 2010–0915.

3. The laminar-turbulent transition zone in the boundary layer

4. Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3