Formation of coherent structures by fluid inertia in three-dimensional laminar flows

Author:

POURANSARI Z.,SPEETJENS M. F. M.,CLERCX H. J. H.

Abstract

Mixing under laminar flow conditions is key to a wide variety of industrial fluid systems of size extending from micrometres to metres. Profound insight into three-dimensional laminar mixing mechanisms is essential for better understanding of the behaviour of such systems and is in fact imperative for further advancement of (in particular, microscopic) mixing technology. This insight remains limited to date, however. The present study concentrates on a fundamental transport phenomenon relevant to laminar mixing: the formation and interaction of coherent structures in the web of three-dimensional paths of passive tracers due to fluid inertia. Such coherent structures geometrically determine the transport properties of the flow and thus their formation and topological structure are essential to three-dimensional mixing phenomena. The formation of coherent structures, its universal character and its impact upon three-dimensional transport properties is demonstrated by way of experimentally realizable time-periodic model flows. Key result is that fluid inertia induces partial disintegration of coherent structures of the non-inertial limit into chaotic regions and merger of surviving parts into intricate three-dimensional structures. This response to inertial perturbations, though exhibiting great diversity, follows a universal scenario and is therefore believed to reflect an essentially three-dimensional route to chaos. Furthermore, a first outlook towards experimental validation and investigation of the observed dynamics is made.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3