Approximate solutions for developing shear dispersion with exchange between phases

Author:

PHILLIPS C. G.,KAYE S. R.

Abstract

We consider the transport of a tracer substance in Poiseuille flow through a pipe lined with a thin, fixed wall layer in which the tracer is soluble. A formal solution is given for the variation of concentration with time at a fixed downstream position following an initial release of tracer. Asymptotic approximations are derived assuming that: (i) the Péclet number is large; (ii) the time scale for diffusion across the wall layer is much larger than that for diffusion across the fluid phase and (iii) the dimensionless distance downstream of the point of release, z, is large. This means that the transverse concentration variation is small within the fluid phase, so that transport is dominated by the exchange of tracer between the phases and radial diffusion within the wall layer. The character of the concentration transient is found to be determined by two dimensionless numbers, an absorption parameter κ and an effective wall layer thickness ν (both rescaled to take account of the ratio of diffusivities in the two phases); by assumption (ii), ν is large. Several different regimes are possible, according to the values of κ, ν and z. At sufficiently large distances, a Gaussian approximation, analogous to Taylor's solution, is applicable. At intermediate distances, provided κ is not too large, a highly skewed transient is predicted. If κ is small, there exists another region further upstream where the effect of the wall is negligible, and Taylor's Gaussian approximation applies. More complicated behaviour occurs in the zones of transition between these three regions. The behaviour described is expected to be typical of a range of similar systems. In particular, it may be shown that the basic form of the skewed approximation is insensitive to the geometry of the system, and also applies when the Péclet number is of order unity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3