Unsteady convective–diffusive transport in semicircular microchannels with irreversible wall reaction

Author:

Azari MiladORCID,Sadeghi ArmanORCID

Abstract

The unsteady dispersion of a solute band by a steady pressure-driven flow in a semicircular microchannel is theoretically studied via the generalized dispersion model. Considering an irreversible first-order reaction at the curved wall while assuming a no-flux boundary condition at the flat wall, analytical solutions are obtained for the exchange, convection and dispersion coefficients as well as the dimensionless forms of solute concentration and mean solute concentration. The solutions are obtained assuming an initial solute band of arbitrary cross-sectional shape and axial distribution and the results are presented for both circular and semicircular shapes with the uniform distribution being a special case of the latter. Besides the general solutions, special solutions are also derived for uniform velocity and no-reaction cases. In the following, the influences of the initial concentration distribution and the Damköhler number, a measure of the reaction rate, on the transport coefficients and the concentration distribution are investigated in depth. It is demonstrated that the combination of the initial concentration distribution and the Damköhler number specifies the variations of the transport coefficients in the short term but the Damköhler number is the only parameter dominating the long-term values: the exchange and convection coefficients are increasing functions of the Damköhler number whereas the opposite is true for the dispersion coefficient. Moreover, we show that, provided the solute injection is appropriately positioned and shaped, liquid-phase transportation with little dispersion is possible in typical microchannels utilizing semicircular geometry.

Funder

Alexander von Humboldt-Stiftung

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3