Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks

Author:

Byars Jeffrey A.,Öztekin Alparslan,Brown Robert A.,Mckinley Gareth H.

Abstract

Experimental observations and linear stability calculations are presented for the stability of torsional flows of viscoelastic fluids between two parallel coaxial disks, one of which is held stationary while the other is rotated at a constant angular velocity. Beyond a critical value of the dimensionless rotation rate, or Deborah number, the purely circumferential, viscometric base flow becomes unstable with respect to a nonaxisymmetric, time-dependent motion consisting of spiral vortices which travel radially outwards across the disks. Video-imaging measurements in two highly elastic polyisobutylene solutions are used to determine the radial wavelength, wavespeed and azimuthal structure of the spiral disturbance. The spatial characteristics of this purely elastic instability scale with the rotation rate and axial separation between the disks; however, the observed spiral structure of the secondary motion is a sensitive function of the fluid rheology and the aspect ratio of the finite disks.Very near the centre of the disk the flow remains stable at all rotation rates, and the unsteady secondary motion is only observed in an annular region beyond a critical radius, denoted R*1. The spiral vortices initially increase in intensity as they propagate radially outwards across the disk; however, at larger radii they are damped and the spiral structure disappears beyond a second critical radius, R*2. This restabilization of the base viscometric flow is described quantitatively by considering a viscoelastic constitutive equation that captures the nonlinear rheology of the polymeric test fluids in steady shearing flows. A radially localized, linear stability analysis of torsional motions between infinite parallel coaxial disks for this model predicts an instability to non-axisymmetric disturbances for a finite range of radii, which depends on the Deborah number and on the rheological parameters in the model. The most dangerous instability mode varies with the Deborah number; however, at low rotation rates the steady viscometric flow is stable to all localized disturbances, at any radial position.Experimental values for the wavespeed, wavelength and azimuthal structure of this flow instability are described well by the analysis; however, the critical radii calculated for growth of infinitesimal disturbances are smaller than the values obtained from experimental observations of secondary motions. Calculation of the time rate of change in the additional viscous energy created or dissipated by the disturbance shows that the mechanism of instability for both axisymmetric and non-axisymmetric perturbations is the same, and arises from a coupling between the kinematics of the steady curvilinear base flow and the polymeric stresses in the disturbance flow. For finitely extensible dumb-bells, the magnitude of this coupling is reduced and an additional dissipative contribution to the mechanical energy balance arises, so that the disturbance is damped at large radial positions where the mean shear rate is large.Hysteresis experiments demonstrate that the instability is subcritical in the rotation rate, and, at long times, the initially well-defined spiral flow develops into a more complex three-dimensional aperiodic motion. Experimental observations indicate that this nonlinear evolution proceeds via a rapid splitting of the spiral vortices into vortices of approximately half the initial radial wavelength, and ultimately results in a state consisting of both inwardly and outwardly travelling spiral vortices with a range of radial wavenumbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference48 articles.

1. Goussis, D. A. & Pearlstein, A. J. 1989 Removal of infinite eigenvalues in the generalized matrix eigenvalue problem.J. Comput. Phys. 84,242–246.

2. Quinzani, L. M. , McKinley, G. H. , Brown, R. A. & Armstrong, R. C. 1990 Modeling the Rheology of Polyisobutylene Solutions.J. Rheol. 34(5),705–748.

3. Larson, R. G. , Muller, S. J. & Shaqfeh, E. S. G. 1994 The effect of fluid rheology on the elastic Taylor–Couette flow instability.J. Non-Newtonian Fluid Mech. 51,195–225.

4. Flory, P. J. 1953 Principles of Polymer Chemistry .Cornell University Press.

5. Chiao, S.-M. F. & Chang, H.-C. 1990 Instability of a Criminale–Ericksen–Filbey fluid in a disk-and-cylinder system.J. Non-Newtonian Fluid Mech. 36,361–394.

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3