Morphology of Anisotropic Banded Structures in an Emulsion under Simple Shear

Author:

Mateus Jairo Eduardo Leiva1ORCID,Huesca Marco Antonio Reyes1,Lavielle Federico Méndez1ORCID,Aguilar Enrique Geffroy2

Affiliation:

1. Departamento de Termofluidos, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, CDMX, Mexico

2. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, CDMX, Mexico

Abstract

The formation of flow-induced, oriented structures in two-phase systems, as in this study, is a phenomenon of considerable interest to the scientific and industrial sectors. The main difficulty in understanding the formation of bands of droplets is the simultaneous interplay of physicochemical, hydrodynamic, and mechanical effects. Additionally, banded structure materials frequently show multiple length scales covering several decades as a result of complex time-dependent stress fields. Here, to facilitate understanding a subset of these structures, we studied water in oil emulsions and focused on the effects of three variables specifically: the confinement factor (Co=2R/H), the viscosity ratio (p), and the applied shear rate (γ˙). The confinement (Co) is the ratio between the drop’s diameter (2R) and the separation of (the gap between) the circular rotating disks (H) containing the emulsion. We carried out (a) observations of the induced structure under different simple shear rates, as well as (b) statistical and morphological analysis of these bands. At low shear rates, the system self-assembles into bands along the direction of the flow and stacked normal to the velocity gradient direction. At higher shear rates is possible to observe bands normal to the vorticity direction. Here, we show that a detailed analysis of the dynamics of the band structures is amenable, as well as measurements of flow field anomalies simultaneously observed. The local emulsion viscosity varies in time, increasing in regions of higher droplet concentration and subsequently inducing velocity components perpendicular to the main flow direction. Thus, the emulsion morphology evolves and changes macroscopically. A relatively plausible explanation is attributed to the competitive effects of coalescence and the rupture of drops, where p values less than one predominate coalescence.

Funder

Universidad Nacional Autónoma de Mexico

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3